AM Directional Antennas in a Digital World

2005 NAB Radio Show
Part 1 – Directional Antenna Basics

AM Directional Antennas in a Digital World

• Day 1 (Wednesday)
 – 8:00 AM – 1:00 PM - DA Basics

• Day 2 (Thursday)
 – 8:00 AM – 11:00 AM – DAs & HD Radio
 – 11:00 AM – Transmitter Loading Panel Discussion

Introduction to DA Patterns

2005 NAB Radio Show
Part 1 – Directional Antenna Basics
Purpose of Directional Antennas?

- Daytime: Groundwave Interference
- Nighttime Protection:
 - Groundwave Service of Class B and C Stations
 - Skywave Service of Class A Stations
- Coverage Improvement
Directional Antenna Pattern Features

- Nulls (or, more properly, Minima)
- Major Lobes
- Minor Lobes

Sample Antenna Pattern

DA Operation Times

- DA-D - Daytime
- DA-N - Nighttime
- DA-CH - Critical Hours
- DA-1 - One Pattern at all times
- DA-2 - Two Patterns Daily
- DA-3 - Three Patterns Daily or Weekly

Types of Directional Antenna Pattern

- What is Pattern Size?
 - Definition of RMS
 - Use of Assumptions about Loss
Pattern Types

- Theoretical Pattern
- Standard Pattern (Known as Expanded Pattern Internationally)
- Modified or Augmented Standard Pattern
- Converted Standard Pattern
Directional Antenna Parameters

- Theoretical Parameters - The Mathematical Assumptions and Basis for the Pattern
- Operating Parameters - The Pattern Parameters on the FCC License (or Industry Canada TCOC)

Theoretical Parameters

- Geometry
 - Spacing
 - Orientation
 - Antenna Tower Electrical Height
- Electrical Parameters
 - Field Ratio
 - Field Phase

Operating Parameters

- Antenna Monitor
 - Tower Current Sample Ratio
 - Tower Current Sample Phase
- Base Current
- Common Point Current
Directional Antenna Tests and Measurements

- Proof of Performance (Known as a “Full Proof”)
- Partial Proof of Performance
- Monitor Point Field Strengths
 - “Radial Partial Proof” to change a monitor point location

Overall Block Diagram

- Common Point Matching Network
- Power Divider
- Phase Adjustments
- Transmission Lines
- ATUs
- Radiating Elements
- Ground System
- Antenna Monitoring System
System Block Diagram

Phasor
- Input From Transmitter
- Outputs to Towers
- Network Adjustments
 - Ratio
 - Phase
 - Common Point Impedance

Adjustments are Not as Labeled
- Tower Currents Effected by Mutual Coupling
- Control Labels Follow Tradition
- Necessity to Adjust Several Controls for a Change

Antenna Tuning Units
- Network
 - Impedance Matching
 - Phase Shifting
- Other Functions
 - Static Drain
 - Blocking Capacitor
 - Coupling Tower Light Power
 - Antenna Monitor Sampling
 - Toroid Pickup or Sampling Line Isolation Coil
Radiating Structures

- Towers (or Masts)
 - Guyed
 - Self-Supporting
- Other Elements
 - Supported Wire
 - Pole or Mast

Feed Methods

- Series Fed
 - Base Insulated
 - All Circuits on Tower Isolated
- Shunt-Fed
 - Base Grounded
 - Isolation Not Necessary
 - Subject to Mechanical Instability and Icing
 - Circulating Currents Can Be Problematic

Radial Ground Systems

- 120 buried Copper Wires
- Quarter Wave in Length
- Approximately 6 - 12 Inches Deep
- Shortened to Avoid Overlap Between Towers
- Sometimes Shortened at property Boundary

Ground Screens

- Expanded Copper Mesh
- Near Base Only
- Often over Gravel
- Sometimes Buried
DA System Measurements
• Common Point Impedance
• Base Impedance
• Transmission Line Impedance
• Base Current

Part I – Directional Antenna Basics

Introduction
• What we won’t talk about: Tower Structures, Real Estate, Buildings for Equipment
• What we will talk about: The Antenna Feed System from Transmitter output to the antenna tower(s)
The Antenna Feed System

- The feed system receives the power from the transmitter output
- It divides it into the correct proportions for each tower
- It makes sure the phase angle of the energy fed to each tower is in the correct relationship to the other towers

Parts of the Feed System

- The feed system has two parts
 - Networks of lumped components
 - Transmission Lines

Components

- Capacitors - Categorized by Dielectric
 - Mica
 - Vacuum
 - (Occasionally Air, Ceramic, or Polystyrene)
- Only Vacuum and Air Capacitors are Available in Variable Versions
Coils (Inductors)

- Low Current (up to 20 A) wound with ribbon, edgewise on frames (these are also used for very low current in good quality systems)
- High Current wound with copper tubing
Unusual Inductors
- Older very low current coils (up to about 8 A) sometimes wound from large diameter wire on ceramic or other insulators - even on PVC sewer pipe!
- High current coils sometimes wound in ‘Bifilar’ method - two side-by-side windings connected in parallel
- Very high current toroids manufactured of heavy gauge sheet stock or bar stock

Variable Inductors
- Variable inductors have sliding contacts which are a frequent failure point
- Some older inductors have a 1 turn loop (shorted turn) which can be rotated to make a very minor change in inductance
- Some very old equipment uses a variable inductor or transformer called a “variometer”

Switching Devices
- Antennas that are operated in more than one mode use switches to change modes
 - “contactors” or High Voltage Relays
 - Vacuum Switches
- Manual switches using “J” Plugs
- Temporary Metering and Measurement using “J” plugs

Current Meters
- Thermocouple Ammeters: A bimetallic thermocouple which produces a DC current proportional to heating caused by the RF current, used to drive a meter movement
- Toroidal Current Transformers, whose output is rectified and used to drive a meter movement
Tower Lighting

- Insulated “Base fed” towers require isolation of the AC feed to the tower lights
- Three methods
 - Lighting Chokes
 - “Ring” transformers
 - Quarter-wave isolation sections
- Shunt fed or skirt fed towers do not require isolation
Lighting Flashing Generators

- Electromechanical (Motor Driven)
- Electronic

Flashing Unit Location

- Mounted on the tower
- Located on the “Cold” side of the RF feed system
- Synchronization

Tower-Mounted Antennas

- Isocouplers
- Isolation Coils
- Quarterwave Isolation

(antenna sample loop isolation follows the same principles)
Antenna Sample Devices

- **Sample Loops**
 A sample loop is a current transformer that couples to the current flowing in the antenna tower.
- **Type Approval rules call for**
 - Single Turn, Fixed position
 - Unshielded
 - Tower Potential

Obsolete Sample Devices

- Older Systems sometimes have shielded, rotatable loops -- these are obsolete, and cannot be used in type approved systems.
Sample Line Isolation Coils
- Relatively high impedance inductors, wound from transmission line
 - Anti-resonated: Shunted with a capacitor of the same magnitude of reactance so the combined parallel resonant circuit has very high impedance
 - Not-resonated: Sometimes tapped to adjust resistive component of drive impedance

Toroidal Pickup Units
- Toroidal transformers, with the primary a straight conductor: Output voltage proportional to primary current
- Older Systems sometimes have
 - One turn loops with Faraday shields to reduce capacitive coupling
 - Capacitive Voltage dividers

Shortcomings of Toroids
- Not suitable for use with towers that are over about 120 electrical degrees tall
- Must be installed so that no shunt current changes past the loop can affect the pickup currents
- The tower feed current is not the same as the magnitude and angle of the radiated field

Transmission Lines
- Types of Coaxial Transmission lines
 - Air Dielectric
 - Foam Dielectric
 - Rigid vs. Flexible
 - Solid vs. Braided Outer Conductor
 - Quasi-Coaxial Open Wire
- Direct Feed for Simple non-DA Antennas
- Sample Line Requirements
 - Solid Outer Conductor
 - ½ Degree Environmental Stability
Transmission Line Impedance

- Impedance - Nearly Always 50 ohm
 - BUT: Older Systems may use 65 or 70 ohms
 - Systems using Cable TV Trunk Cable will be 75 ohm - its very high quality cable, and very cheap!
 - Impedance depends on ratio of diameters of inner and outer conductor: the formula is:

\[Z_0 = \frac{138}{E} \log_{10} \frac{D}{d} \]

Where:
- \(Z_0 \) = characteristic impedance
- \(E \) = dielectric constant (air is 1)
- \(D \) = inside diameter of outer conductor
- \(d \) = outside diameter of outer conductor

Other Transmission Line Characteristics

- Depending upon the Dielectric material, the Velocity Factor of cable may vary from 65% to almost 100%.
- The Power Rating of coaxial cable is dependent on the voltage breakdown or the center conductor temperature rise
- VSWR (Voltage Standing Wave Ratio) has a profound effect on power rating
<table>
<thead>
<tr>
<th>Component Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitors</td>
</tr>
<tr>
<td>Inductors</td>
</tr>
<tr>
<td>Contactors</td>
</tr>
<tr>
<td>Meters</td>
</tr>
<tr>
<td>Sample Devices</td>
</tr>
<tr>
<td>Transmission Lines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum (and Air Dielectric) Capacitors are Voltage Limited</td>
</tr>
<tr>
<td>Mica (and other solid dielectric) Capacitors are normally Current Limited</td>
</tr>
<tr>
<td>Failure modes are nearly always catastrophic BUT Vacuum capacitors slowly become gassy, and should be prepared for use at maximum voltage capability</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor arcs that don’t result in serious damage can often be “cleaned up”</td>
</tr>
<tr>
<td>Variable inductors need maintenance on moveable contacts - esp. older types, and silver-bearing grease is very helpful</td>
</tr>
<tr>
<td>Lightning can cause such large currents that inductors collapse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contactors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many contactors disassemble themselves over time because of the mechanical vibration of their operation.- maintenance!</td>
</tr>
<tr>
<td>Water (including hygroscopic, or capillary moisture) can cause solenoid failure</td>
</tr>
</tbody>
</table>
Contactors, Cont’d

• Malfunction of control systems can cause overcurrent causing solenoid failure
• Microswitches fail or become misaligned
• RF contacts wear with time (or become misaligned) and require replacement

Meters (Thermocouple)

• Any overcurrent event (arc, lightning, AC circuit failure) can cause thermocouples to malfunction
• Meter movements tend to read wrong over time due to decline in permanent magnet strength

Meters, Toroid

• Meter movement malfunctions
• Shorts or overcurrents damage toroid insulation
• Shorts or overcurrents damage or destroy resistive pads or rectifier elements

Sample Loops

• Connector Open Circuits (usually due to mechanical vibration)
• Water in connectors (and lines)
• Failure or damage to insulators (ice)
• Mechanical Movement on Tower
Sample Toroids
• Shorted windings due to overcurrent
• Damage due to arcs to ground
• Reverse Installation (reverses phase angle)

Transmission Lines
• Arc-overs at end connections
• Water in lines
• Split bullets or open bullets
• Installation damage, or damage during other excavation
• Long term corrosion in air dielectric lines that are not pressurized
Network Building Blocks

- T Networks
- L Networks
- Shunt Reactance
- Series Reactance

System Block Diagram

Divider Types

Power Division

\[Y_x = G_{n} + jB_{n} \]

\[P_x = G_{n}(E_{Bus})^2 \]

General Power Divider Principle
Divider Types

- 10° T NETWORK
- 135° DEGREES
- FIXED L NETWORK
- CAPACITIVE
- QUADRATURE
- FLEXIBLE POWER FLOW

Examples

(a) MIXED USE OF POWER DIVIDER TYPES
(b) SIMPLIFICATION BY ELIMINATION OF PARALLEL COMPONENTS

More Examples

(c) DIRECT FEED TO HIGHEST POWER TOWER
(d) SPLIT BUSS WITH PATTERN BANDWIDTH IMPROVEMENT

Two-Tower Phasing System Example

- Necessary Specifications
 - Parameters
 - Base Impedances
 - Base Currents
 - Power Distribution
 - Transmission Lines and Their Lengths
Traditional Loop Location

- Appropriate Tower Heights
- Subject to Shunt Effects

Toroids

- Appropriate Tower Heights
- Subject to Shunt Effects
Detuning of Structures

- Unused array towers
- Nearby Communications towers
- Power Line Towers
AM Directional Antennas in a Digital World

- **Day 1 (Wednesday)**
 - 8:00 AM – 1:00 PM - DA Basics

- **Day 2 (Thursday)**
 - 8:00 AM – 11:00 AM – DAs & HD Radio
 - 11:00 AM – Transmitter Loading Panel Discussion
Part 1 – Directional Antenna Basics

X 9:00 AM Welcome Marino
X 9:05 AM Introduction to DA Patterns Dawson
X 9:25 AM Introduction to DA Systems Rackley
X 9:55 AM DA Hardware I - Components Dawson
X 9:55 AM DA Hardware II – Networks Rackley
X 10:55 AM Break
X 11:10 AM DA Troubleshooting Rackley
11:50 AM FCC Procedures Dawson
12:40 PM Questions and Answers Dawson/Rackley
1:00 PM End

DA Troubleshooting

2005 NAB Radio Show
Part 1 – Directional Antenna Basics

Problem Types - Immediate

• Internal to Array
 – Radiating System
 – Antenna Monitoring System
• External to Array - Re-radiation

Problem Types - Gradual

• Internal to Array
 – Drifting Component Values
 – Ground System Deterioration
• External to Array
 – Seasonal Variation
 – Permanent Changes
 • Development
 • Water Table Changes
Basic Troubleshooting

• Consider Multiple Factors Simultaneously
 – Antenna Monitor Parameters
 – Monitor Point Field Strengths
 – Common Point Impedance/Transmitter Load
• Always Record Settings and Readings Before Any Action
• Keep Records

Example - Single Tower (Non-Reference) Sampling System Change

• Only Parameters of One Tower Change
• No Common Point Impedance Change
• No Monitor Point Field Strength Change

Example - Single Tower (Reference) Sampling System Change

• All Towers Suffer Parameter Changes of Same Magnitude
• No Common Point Impedance Change
• No Monitor Point Field Strength Change

Example - Single Tower Network Failure

• All Towers Suffer Parameter Changes of Differing Magnitudes
• Common Point Impedance Might Change
• Monitor Point Field Strengths Might Change
• Look For Problem In Circuit of Tower With Largest Change
Example - Single Monitor Point Change Without Parameter Change

- Re-radiation Source Near Monitor Point
- Conductivity Change Over Path to Monitor Point

Example - Multiple Monitor Point Change W/O Parameter Change

- Re-radiation Source Near the Array
- General Conductivity Change

Example - Common Point Impedance Change W/O Parameter Change

- If Sudden and/or Large - Component Failure
- If Gradual and/or small - May be Drift

Antenna Monitor Sampling System Tests

- Switching Lines on Antenna Monitor to Isolate Problem
- Visual Inspection of Pickup Devices and Lines
- Impedance Measurements into Lines connected to Pickup Devices
- Impedance Measurements of Lines OC & SC
- Dielectric Testing of Lines
Feed System Tests

- Visual Inspection of Components
- Change Patterns (if Possible) to Rule Out Lines, etc.
- Operating Impedance Measurements of Line Terminations
 - Must Be Compared to Baseline Measurements
 - Not Necessarily Matched to Characteristic Impedance
- Impedance Measurements of Network Branches and Components

Component Replacement

- Assure Correct Rating
- Adjust the Affected Network Branch to Restore Parameters

Test Equipment

- Field Strength Meter
- Operating Impedance Bridge
- Generator/Detector
- Network Analyzer System

Wednesday, September 21, 2005

Part I – Directional Antenna Basics

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM</td>
<td>Welcome</td>
<td>Marino</td>
</tr>
<tr>
<td>8:05 AM</td>
<td>Introduction to DA Patterns</td>
<td>Dawson</td>
</tr>
<tr>
<td>9:05 AM</td>
<td>Introduction to DA Systems</td>
<td>Dawson</td>
</tr>
<tr>
<td>9:50 AM</td>
<td>DA Hardware I – Components</td>
<td>Dawson</td>
</tr>
<tr>
<td>10:50 AM</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>11:10 AM</td>
<td>DA Troubleshooting</td>
<td>Rackley</td>
</tr>
<tr>
<td>11:50 AM</td>
<td>FCC Procedures</td>
<td>Dawson</td>
</tr>
<tr>
<td>12:40 PM</td>
<td>Questions and Answers</td>
<td>Dawson/Rackley</td>
</tr>
<tr>
<td>1:00 PM</td>
<td>End</td>
<td></td>
</tr>
</tbody>
</table>
FCC Procedures

2005 NAB Radio Show
Part 1 – Directional Antenna Basics

How FCC Technical Procedures Work

• Applications for CP – FCC Form 301
 – Major - City Change, non–adjacent Frequency Change
 – Minor - Most Other
• Current Technical Standards for Allocation from MM Docket 87-267

Technical Procedures

• Applications for License (FCC Form 302)
 – Direct Power Measurement
 – License covering CP for NEW Construction
 – License to Change Parameters, Monitor Point Location, Sample System Changes

FCC Rules - Construction

• Tower Fencing for NIER
• Sample System Construction
• Metering Requirements
FCC Rules - Operation

- Keep MP’s within Limits
- Antenna Monitor Parameters
 - ±3 degrees phase angles, ±5% current ratios
 - +5%, -10% Power

Construction Rule - 73.1615

- (If no Frequency Change)
 - Reduced Power, MP’s in Limits
 - non-DA, 25% of DA Licensed Power
 - DA as Necessary for Field Strength Meas.
 - DA w/ New Pattern “Substantially Adjusted”
 - Up to 30 Days without Prior Authority

STA Rule - 73.1635

- DON’T LIE
- STA Request Due to Damage can be made Electronically (Confirm in Writing)
- Be Specific - What Happened, How Do You Propose to Operate?
- Extended Hours Operation ONLY per Emergency Operation Rule 73.3542

TABLE OF CONTENTS

1. Construction Permit
2. FCC Form 302, Section III
3. Engineering Statement Narrative
4. Correspondence with MMB Staff re. Measurement Radials or other CP Errors
5. Tables of Measured Inverse Field Strengths, Parameters
6. Sample System Statement
7. Measured Non-DA Pattern
8. Measured DA-N Pattern
9. Graphs of DA-N and Non-DA Measurements
10. Field Intensity Measurement Data Sheets
11. Map Key
12. Monitor Point Locations: Descriptions, Map, Photographs
13. Ground System Layout Drawing
14. Antenna impedance Measurements
15. Antenna System Diagram
16. Statement of Engineer

The items in RED have normally been required, because of a rule provision, because of a question in the 302 Form, or because the staff informally requires them.
New Requirements for Full Proof-of-Performance

- Maximum 12 Radials – May Assume Symmetry
- Minimum 15 Measurement Points Per Radial
- At Least 7 Measurement Points Within 3 km
- Minimum 6 Radials
- Measurements Unnecessary Beyond 15 km

RADIATION NULLS (VERTICAL ANGLE = 0 DEGREES)

<table>
<thead>
<tr>
<th>AZIMUTH</th>
<th>THEORETICAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1</td>
<td>381.825</td>
<td>409.291</td>
</tr>
<tr>
<td>79.4</td>
<td>221.273</td>
<td>246.507</td>
</tr>
<tr>
<td>144.9</td>
<td>178.293</td>
<td>204.529</td>
</tr>
<tr>
<td>338.8</td>
<td>143.424</td>
<td>171.651</td>
</tr>
</tbody>
</table>

RADIATION MAXIMAS (VERTICAL ANGLE 0 DEGREES)

<table>
<thead>
<tr>
<th>AZIMUTH</th>
<th>THEORETICAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>359.8</td>
<td>644.840</td>
<td>682.074</td>
</tr>
<tr>
<td>50.5</td>
<td>807.168</td>
<td>851.520</td>
</tr>
<tr>
<td>107.6</td>
<td>749.008</td>
<td>790.760</td>
</tr>
<tr>
<td>268.2</td>
<td>6192.592</td>
<td>6502.743</td>
</tr>
</tbody>
</table>
RADIATION NULLS (VERTICAL ANGLE 0 DEGREES)

<table>
<thead>
<tr>
<th>AZIMUTH</th>
<th>THEORETICAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.9</td>
<td>283.481</td>
<td>298.579</td>
</tr>
<tr>
<td>143.1</td>
<td>283.481</td>
<td>298.579</td>
</tr>
<tr>
<td>283.0</td>
<td>467.519</td>
<td>491.456</td>
</tr>
</tbody>
</table>

RADIATION MAXIMAS (VERTICAL ANGLE 0 DEGREES)

<table>
<thead>
<tr>
<th>AZIMUTH</th>
<th>THEORETICAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>103.0</td>
<td>467.519</td>
<td>491.456</td>
</tr>
<tr>
<td>206.6</td>
<td>1066.424</td>
<td>1119.991</td>
</tr>
<tr>
<td>359.4</td>
<td>1066.424</td>
<td>1119.991</td>
</tr>
</tbody>
</table>
New Requirements for Partial Proof-of-Performance

- Minimum 4 Radials
- Radials at All Monitor Point Azimuths
- Less Than 4 Monitor Points – Measure Nearest to Monitored Radials
- 8 Measurement Point Per Radial

Partial Proof-of-Performance Analysis Options

- DA/DA Comparison to Last Proof
- DA/ND With New Data – ND Field from Last Proof
- DA/ND With New Data – New ND Analysis Additional Close-In Measurements (< 3 km) and Graphical Analysis Required

New Uses For Partial Proofs-of-Performance

- May Select New Measurements Points Not From Full Proof DA/ND Analysis Required
- May Establish New Monitor Points Not From Full Proof DA/ND Analysis Required
- Monitor Point Limit Can Be Changed With Single-Radial Measurements
- Pattern Augmentation Additional Close-In Measurements (< 3 km) and Graphical Analysis Required
Other Matters

- No Critical Arrays
- No Base Current Meters
- Single Frequency Antenna Impedance Measurements
- Non-Zero Common Point Reactance
- Simplified Monitor Point Descriptions

Monitor Point Change Simplifications:

- If a point from the original proof is used, new measurements on that point
- If a new point is used, “partial proof” measurements on the affected radial
- No monitor point map required

Materials Required to Be kept At Station

- Maps Showing Measurement Locations
- Schematic Showing Impedance Measurement Points
- Impedance Measurement Methodology Details
- Impedance Measurements Results

“Non-Type Approved” Monitor Systems

- If your antenna monitor system uses
 - Shielded or rotatable loops
 - RG-8 or other braided conductor cable

 You need to follow the requirements for logging, MP measurements
Economic Considerations –
It's now less costly to keep your directional array legal!

- Partial Proof-of-Performance
 - About 1/3 the previous cost

- Full Proof-of-Performance
 - About ½ the previous cost

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM</td>
<td>Welcome</td>
<td>Marino</td>
</tr>
<tr>
<td>8:05 AM</td>
<td>Introduction to DA Patterns</td>
<td>Dawson</td>
</tr>
<tr>
<td>8:25 AM</td>
<td>Introduction to DA Systems</td>
<td>Rackley</td>
</tr>
<tr>
<td>8:50 AM</td>
<td>DA Hardware I - Components</td>
<td>Dawson</td>
</tr>
<tr>
<td>9:50 AM</td>
<td>DA Hardware II - Networks</td>
<td>Rackley</td>
</tr>
<tr>
<td>10:30 AM</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>11:10 AM</td>
<td>DA Troubleshooting</td>
<td>Rackley</td>
</tr>
<tr>
<td>11:50 AM</td>
<td>FCC Procedures</td>
<td>Dawson</td>
</tr>
<tr>
<td>12:40 PM</td>
<td>Questions and Answers</td>
<td>Dawson/Rackley</td>
</tr>
<tr>
<td>1:00 PM</td>
<td>End</td>
<td></td>
</tr>
</tbody>
</table>

QUESTIONS ?

2005 NAB Radio Show
Part 1 – Directional Antenna Basics