AM IBOC Ascertainment Project Corporation for Public Broadcasting

The dTR/H&D Joint Venture

A Joint Venture of duTreil, Lundin & Rackley and Hatfield & Dawson

Project Objectives

- Determine if AM IBOC can be successfully added to AM Public Radio Stations
- Provide Information that will optimize the performance of the AM Station for improvements to both Analogue and IBOC
- Identify Problem Installations
- Provide Suggestive Remedies for Conversion to IBOC

Project Components

- Site Visits to 53 CPB Qualified AM Stations from the Bering Sea to Puerto Rico
- Station Physical Inspection
- Antenna System Measurements
 - System Bandwidth
 - Directional System Performance

Project Analysis and Report

- Antenna System's compliance with Ibiquity's recommended "desired characteristics"
- Information for optimization for both IBOC and Analog system
- Report problems installations
- Recommendations for IBOC implementation

Non-DA Antennas Poor Performance May Result from:

- Electrically Short Antennas
- Poor Skirt-Feed Design
- Odd Vertical Geometry or Other Antenna Mounting or Structural Geometry

Directional Antennas Poor Performance May Result from:

- High RSS/RMS Ratio
- Non-Optimum Feed System
- Possible Parameter Inversion
- Unfortunate Choice of System Geometry

RMS = Pattern Size $RSS = (E_1^2 + E_2^2 + ... + E_n^2)^{\frac{1}{2}}$ If E values are large system is "sensitive" to small % changes If E values are small system is more stable and has less change with frequency (sidebands)

dTR/H&D Joint Venture

With simple straightforward feed system designs

	Lower VSWR	Upper VSWR
Example 1	1.11:1	2.17:1
Example 2	1.80:1	1.14:1
Example 3	2.17:1	1.18:1

The difference in feed system between Example 1 and Example 2 is only a 20 degree change in phase angle of the two ACU networks!

Best case for this simple feed system design

	Lower VSWR	Upper VSWR
Example 4	1.12:1	1.09:1
Input Z	45 +j2	48 —j4

Corrected with Phase Rotation Network to:

IBOC Review

Figure 2 AM IBOC hybrid waveform spectrum.

Antenna Performance Concerns

- Unnecessarily High Digital-to-Analog
 Crosstalk (Hiss and "Bacon Frying" Sound)
- Decreased "Robustness" of Digital Signal
- Digital Coverage Area Limited by Pattern Bandwidth

Antenna Performance Concerns

- Higher Adjacent Channel Interference Resulting from Poor Pattern Bandwidth
- Noisier Analog Reception in DA Null Region Due to Poor Pattern Bandwidth

IBOC Antenna System Requirements (as we know now)

 +/- 5 kHz – RF Final Amplifier Load Impedance Symmetry Such That VSWR of One Sideband Impedance Does Not Exceed 1.035:1 When Normalized to the Complex Conjugate of the Corresponding Sideband Impedance on the Other Side of Carrier Frequency (Hermitian Symmetry)

IBOC Antenna System Requirements (as we know now)

- +/- 10 kHz RF Final Amplifier Load
 Impedance VSWR Not Exceeding 1.20:1
- +/- 15 kHz RF Final Amplifier Load Impedance VSWR Not Exceeding 1.40:1

IBOC Antenna System Requirements (as we know now) Cont.

- For Directional Antennas
 - Amplitude Response of +/- 2 dB across the 30 kHz Bandwidth
 - Phase Response of less than 27° across the 30 kHz of Bandwidth

Directional Antenna Analysis

System Measurements +/- 30 kHz Measured on Sample System

Measurements used in MiniNEC model to determine Far-Field Performance

Antenna Array Parameter Measurement System

DRM Antenna System Requirements

- +/- 10 kHz –VSWR Not Exceeding 1.20:1
- +/- 15 kHz –VSWR Not Exceeding 1.40:1
- Hermitian Symmetry
- Re-injection of suppressed carrier may also be used in cases where bandwidth is limited

Optimizing Load Impedance

- Reduces Noise from Digital-To-Analog Crosstalk
- Improves Spectral Purity of Digital Signal
- Improves Headroom for Receiver Error Correction

Final Amplifier Load Optimization

Phase Rotation Network

Transmitters With Transformer Combiners

10

KOTZ

Load At Antenna Feed Line

104.5° Rotation

AM Technical Ascertainment Project 07-Feb-05

dTR/H&D Joint Venture

dTR/H&D Joint Venture

dTR/H&D Joint Venture

Pattern Bandwidth

18 Directional Stations – 648 Azimuths (10 Degree Intervals)

- 41% Meet IBOC Requirements59% Do not
- Some Patterns Fail over Complete Range
 Most Patterns Fail in Minima or Backside

Overall Statistics

<2% Essentially "Digital Ready"</p>

~55% Only Modest Modifications Needed

~27% Significant Modification/Invesment

~15% Total Redesign/Rebuild Needed

Important Findings

- Poor Maintenance (or complete lack of any maintenance)
- Low power due to wrong operating impedance <u>at carrier</u>
- Poor modulation due to wrong operating impedance <u>at carrier</u>
- Patterns out of adjustment

Maintenance

- IBOC readiness allows attention to other critical infrastructure issues
- Do you buy a new transmitter to put it in a garden shed with a leaky roof?
- Is it time to improve?
 - Electrical service
 - Fencing
 - Security
 - Grounding
 - Etc.

Where to Go From Here

- Transmitter Manufactures are Thinking About This Problem – Adaptive Equalization
- Not Pass-Fail Test IBOC Signal Has Redundancy
- See What Happens

Thanks!